Text-Dependent Speaker Recognition Using Emotional Features and Neural Networks
نویسندگان
چکیده
This paper deals with a novel feature extraction method for text dependent speaker recognition. Four female speakers were used to create a text –dependent database for Malayalam (one of the south Indian languages). Discrete Wavelet Transform was used for feature extraction and artificial neural network was used for machine intelligence. In this work we used emotional features for speaker recognition. Multi Layer perceptron architecture was used for the machine learning. An overall recognition accuracy of 84.37% has been achieved from this experiment.
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملSpeaker Recognition Using Gaussian Mixtures Models
Speech signal contains several levels of information. At first it contains information about the spoken message. At second level speech signal also gives information about the speaker identity, his emotional state and so on. The task of speaker recognition can be divided into two parts: speaker identification and speaker verification. Speaker identification is answering the question which one o...
متن کاملThe Use of Wavelets in Speaker Feature Tracking Identification System Using Neural Network
Continuous and Discrete Wavelet Transform (WT) are used to create text-dependent robust to noise speaker recognition system. In this paper we investigate the accuracy of identification the speaker identity in nonstationary signals. Three methods are used to extract the essential speaker features based on Continuous, Discrete Wavelet Transform and Power Spectrum Density (PSD). To have better ide...
متن کاملTandem deep features for text-dependent speaker verification
Although deep learning has been successfully used in acoustic modeling of speech recognition, it has not been thoroughly investigated and widely accepted for speaker verification. This paper describes an investigation of using various types of deep features in a Tandem fashion for text-dependent speaker verification. Three types of networks are used to extract deep features: restricted Boltzman...
متن کاملDeep Neural Network based Text-Dependent Speaker Recognition: Preliminary Results
Recently there has significant research interest in using neural networks as feature extractors for text-dependent speaker verification. These types of systems have been shown to perform very well when a large amount of speaker data is available for training. In this work we are interested in testing the efficacy of these methods when only a small amount of training data is available. Google re...
متن کامل